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New calculations to over ten million time steps have revealed a more complex 
diffusive behavior than previously reported of a point particle on a square and 
triangular lattice randomly occupied by mirror or rotator scatterers. For the 
square lattice fully occupied by mirrors where extended closed particle orbits 
occur, anomalous diffusion was still found. However, for a not fully occupied 
lattice the superdiffusion, first noticed by Owczarek and Prellberg for a par- 
ticular concentration, obtains for all concentrations. For the square lattice 
occupied by rotators and the triangular lattice occupied by mirrors or rotators, 
an absence of diffusion (trapping) was found for all concentrations, except on 
critical lines, where anomalous diffusion (extended closed orbits) occurs and 
hyperscaling holds for all closed orbits with universal exponents df = 7/4 and 
r = 15/7. Only one point on these critical lines can be related to a corresponding 
percolation problem. The questions arise therefore whether the other critical 
points can be mapped onto a new percolation-like problem and of the dynami- 
cal significance of hyperscaling. 

KEY WORDS: Diffusion; Lorentz lattice gas; critical point; hyperscaling; 
super diffusion. 

1. I N T R O D U C T I O N  

In  a n u m b e r  of  p r e v i o u s  p a p e r s  t he  diffusive b e h a v i o r  o f  L o r e n t z  la t t i ce  

gas  ce l lu la r  a u t o m a t a  ( L L G C A )  ha s  b e e n  s tud ied .  I ~-6~ H e r e  a p o i n t  pa r t i c l e  

m o v e s  in ( c o n s t a n t )  d i sc re te  t ime  s teps  o n  a d i sc re te  la t t ice  f r o m  si te  to  site, 

a n u m b e r  o f  w h i c h  a re  o c c u p i e d  r a n d o m l y  b y  s t a t i o n a r y  sca t t e r e r s  w h i c h  

s ca t t e r  the  pa r t i c l e  a c c o r d i n g  to  s t r ic t ly  d e t e r m i n i s t i c  rules.  T h e  n a t u r e  o f  

t he  diffusive p roce s s  of  the  pa r t i c l e  t h r o u g h  t he  s ca t t e r e r s  h a s  b e e n  t he  

ob jec t  of  these  ir~vest igat ions.  In  th i s  p a p e r  we will con f ine  ourse lves  to  the  

m o t i o n  o f  a pa r t i c l e  o n  a s q u a r e  o r  t r i a n g u l a r  la t t ice  o c c u p i e d  b y  fixed 
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Fig. I. Typical mirror (a) and rotator (b) configurations, particle trajectories, and scattering 

rules for the mirror and rotator models, respectively, on the square lattice. 

scatterers which remain unchanged during the diffusion. We will consider 
two different scatterer models: the mirror  model  and the ro ta tor  model. In 
the mirror  ( rota tor)  model  a particle is scattered upon collision with a 
mirror  ( rotator)  to the right or the left, depending on whether  the mirror  
(rotator)  is a right or a left mir ror  (rotator) ,  respectively (Fig. 1). The 
fraction of right (left) scatterers (mirrors or rotators ,  respectively) on the 
lattice will be denoted by CR(CL), SO that  CR + CL = C is the total fraction 
of  lattice sites occupied by scatterers, i.e., the concentrat ion C of  the 
scatterers. We also choose the time step = the lattice distance = speed 
= 1. For  a given r andom placement of  the mirrors  (rotators) ,  a particle will 
descr ibe- - f rom a given initial pos i t i on - -a  random-l ike walk through the 
lattice (see Fig. 1 ). The diffusive behavior  of  the particle will be obtained by 
averaging over all possible r andom configurations of  the mirrors  (rotators).  
It can be characterized by a number  of  quantities, of which we will only 
consider the mean square displacement •(t) and the radial distribution 
function P(r, t), defined by 

z/(t) = ( r2 ( t ) )  ( I )  

2n 
15(r, t ) =  ~ rP(r ,  t) (2) 

0=0 
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Table I. Comparison of Normal and 
Anomalous  Diffusion 

Normal Anomalous 
(class I) (class II) 

A(t)  ~ t  ~ t  

P(r, t) Gaussian Non-Gaussian 

447 

respectively. Here r = (r, 0) is the position of the particle in polar  coor-  
dinates with respect to the origin, so that  r = [r[ is the distance of the particle 
from the origin. The average in Eq. (1) is over all r andom configurations 
of the scatterers at fixed CR and CL and the sum in Eq. (2) over  all possible 
angles consistent with the lattice. P(r, t) is the probabil i ty  to find the 
particle at the position r at t ime t, given that  it was at the origin at t ime 
t - -0 ,  so that /5(r ,  t) is the probabil i ty  to find the particle a distance r away 
from the origin at time t. 

F rom Eq. (1), we can define a t ime-dependent  diffusion coefficient D(t),  
by 

•(t) 
D(t)  - (3) 

4t 

so that  a diffusion coefficient D exists if in 

D = lira D(t )  (4) 

the right hand sides (r.h.s.) exists. 
When the diffusion is normal  (we will call it class I), P(r,  t) will be a 

Gaussian given by 

' ( r~ ) 
P~(r ,  t) 2(rcDt)l/2 exp - ~ - ~  (5) 

which implies A ( t ) ~  t, but not vice versa (Table I). 

2. THE M IRROR M O D E L  

For  the mirror  mode l - -wh ich  was introduced by Ruijgrok and 
Cohenr  was found that, a l though D existed, P(r, t) was not  Gaussian. 
This was called anomalous  (or class I I )  diffusions (4) (Figs. 2a and 2b). This 
non-Gauss ian  behavior  is due to the presence of closed (periodic) orbits, 
especially near the origin. This is in contrast  to normal  (Gaussian)  diffu- 
sion, where there are no closed orbits, but only open trajectories of  the 
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Fig. 2. (a) Old calculation of  the diffusion coefficient D as a function of  the time t on a 
log~0-1og~o scale for the fixed-mirror model  on the square lattice for CL=CR=0 .2 5 3 2 ~  
(b) Corresponding radial distribution functions P(r ,  t) as a function of  distance r from the 
origin at time steps t = 2 ~o (<~), t = 2 ~-" ( + ), and t = 2 ~4 (F-I), respectively. The stationary peak 
near the origin is due to closed orbits. (c) A possible closed orbit (A)  and zigzag mot ion  (B) 
for the mirror model  on the square lattice for C <  1. 

particles. The time evolution of P is indicated in Fig 2b; it is dominated by 
closed orbits and zigzag motions  (Fig. 2c). Since the time at which orbits 
close can be arbitrarily large, (infinite) extended closed orbits can occur. 

The question arises whether all trajectories eventually close for all C 
and CR/CL. For  C =  1 this question was answered affirmatively by a 
theorem of  Bunimovich and TroubetzkoyCT~: if C = 1 and CR > 0, CL > 0, 
then all trajectories are closed with probabil i ty  1. In this case (C = 1) one 
even knows how fast the trajectories close since it has been shown that  the 
probabil i ty Po(t) to find an open orbit  after time t is given by 18~ 

Po(t) ~ t -]/7 (6) 
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Fig. 3. Inverse probability for open orbits as a function of logs t for the mirror model on the 
square lattice for CL= CR = 0.4. 

so that the number of open orbits decreases in time according to Eq. (6) 
and all trajectories eventually close. The result (6) was obtained by noting 
a connection between the dynamical problem considered here and a bond 
percolation problem on the square lattice (see below). 

For C <  1, only numerical evidence exists ~9) that 

e l  
Po(t)  ~ (7) 

log t + C, 

where C 1 and C2 are constants. (7) implies that all trajectories still close, 
albeit much slower than (6), as illustrated in Fig. 3.19) 

Earlier work suggested anomalous diffusion for all C, which leads to 
a dynamical phase diagram of the mirror model on the square lattice like 
that in Fig. 4a. This phase diagram was based on calculations extending 
typically to 4000-10,000 time steps. The method of calculation is described 
in refs. 2-5 and in the few calculations done for a larger number of time 
steps the class II behavior was consistent with the error bars of the data 
points (Fig. 2a). 2 

However, in a recent paper by Owczarek and Prellberg t 10)it is shown 
that for the particular case C = 2/3 and CR = CL = 1/3, the diffusion process 
is not anomalous but superdiffusive, since D(t )  grows logarithmically 
with t. This result was based on very (many months) long calculations of 
up to a million ,time steps, giving results with very small error bars. This 
prompted us to extend all our calculations to longer times, in order to see 

2 A special case arises when CR (or CL) = 0 and 0 < CL (or CR) < 1, and (zigzag) propagation 
occurs along the direction of the mirrors, while Gaussian (in fact, Boltzmann) diffusion takes 
place along the direction perpendicular to the mirrors. 
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Fig. 4. (a) Old phase diagram for the mirror model on the square lattice~2~; (b) new phase 

diagram. 

how prevalent this superdiffusive behavior was and to correct our phase 
diagram. In order to reduce the calculation times and in addition avoid the 
use of periodic boundary conditions, we employed a modification of the 
method developed by Ziff et al. ('~1 Here a virtual lattice of 65536 x 65536 
sites is divided into small blocks (256• lattice sites each), where 
scatterers are initially put randomly only on that block where the particle 
starts its motion, while no scatterers will be put on all the other blocks 
until the particle enters. This provides an enormous saving in memory and 
(along with other efficiencies) allows a reduction in computer time from 
months to days for obtaining results with very small error bars without any 
boundary effects. The details are given in an accompanying paper. (]2) 

Figures 5a and 5b show our results for D(t) for C =  1 as well as the 
decrease in the number No(t) of open orbits for 10,000 particles for a 
number of values of CR/CL up to one million time steps. The statistical 
errors were determined by doing the calculations in two steps: first an 
average was made over 10,000 particles, with a different random con- 
figuration of the scatterers for each particle, then further averages were 
computed over typically three runs, involving three samples of 10,000 par- 
ticles for each. The standard deviations of the mean are plotted as the error 
bars of the data in the figures. If the error bar does not appear, the error 
bar is inside the symbol. These results are consistent with class II behavior. 
Figure6a shows D(t) for a number of concentrations for C < I  and 
CR= CL: contrary to what was found in Fig. 2a, D(t) increases for suf- 
ficiently long times logarithmically in time for all C < 1, according to 

D ( t ) ~ A  log t (8) 
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Fig. 5. (a) Diffusion coefficient D as a function of logto t for the mirror model on the square 
lattice for C = I  at CL=Ca=O.5 (O), CL-----0.55, CR=0A5 {+), and C~=0.75, Ce=0.25 
(1~) (the first two overlap); (b) number of closed orbits as a function of ! on a logto-log~ scale 
for the mirror model on the square lattice for C = I at CL = 0.6, Ca = 0.4 ( O )  and C L = 0.5, 
Ca = 0,5 ( + ). The lines through the points are drawn to guide the eye, and virtually coincide. 
The slope for both curves is approximately - I / 7 .  
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and CL=0.?5, Ce =0.05 (A); (d) slope of D/logl0 t as a function of concentration of left 
mirrors CL for C =  0.8 and C~ ~ Ca. The lines through the points are drawn to guide the eye. 
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where A is essentially independent of CR for all 0 < C <  1 (Fig. 6b) (for C 
very close to 0 or 1, we need to run for much longer times than feasible to 
obtain a constant slope). Figure 6c shows D(t) for a number  of  concentra- 
tions CR/CL for C = 0 . 8 .  The logarithmic increase (8) of  D(t) is clearly 
visible, but for CR 4: CL, the constant A is CR-dependent (Fig. 6d). Thus, 
while the coefficient A appears to be universal for CR = CL it is not  for 
CR 4: CL. As a result of  the behavior of  D(t), the phase diagram for mirrors 
on a square lattice is not  that  of  Fig. 4a, but that shown in Fig. 4b. 

The P(r, t) for C =  1 and CL = CR =0.5  is plotted in Fig. 7a, while 
that for C =  0.6 and CL = CR = 0.3 is plotted in Fig. 7b for a number  of  
different t imes)  In both cases the curves increase in length and decrease in 
height with increasing time. Although the first case is that of  anomalous  
diffusion (class II) and the second case of  superdiffusion, the difference 
between the two curves is only significant around r ~  0, where in the first 
case almost one order of magnitude more closed orbits occur than in the 
second case. For  larger times, a difference is hardly noticeable and it is not  
clear whether this is due to the difference in concentrat ion or in diffusive 
behavior. 

We believe that the origin of  the superdiffusive behavior for C < 1 is 
twofold: 

1. The slow decay of  the number  of  open trajectories, as given by 
Eq. (7). 

2. The possibility of  large zigzag motions (Fig. 2c), because of  the 
presence of  unoccupied sites on the lattice. 

3 There is no obvious difference in behavior from Fig. 2b, except that we used periodic 
boundary conditions for Fig. 2b, rather than the procedure of ref. 11. 
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Fig. 8. A typical particle trajectory (thin solid line with arrows) on the square lattice (thin 
solid lines) relates to the perimeters of bond clusters each on one of two sublattices, respec- 
tively (dashed and dotted lines, respectively). The thick lines are the perimeters of the bond 
clusters (also the mirrors for the mirror model), while L and R refer to rotators for the corre- 
sponding situation for the rotator model. The particle trajectory resides between the inner and 
outer perimeters of the two clusters. 

3. M I R R O R  M O D E L  A N D  P E R C O L A T I O N  

For later discuss ions ,  we  n o w  sketch h o w  the trajectories of  the par- 
ticle on  the fully occupied  square lattice (i.e., for C = 1 ) in the mirror mode l  
can be related to perco la t ion  clusters of  a b o n d  perco lat ion  problem on 
two sublatt ices  of  the original  lattice, t21 .4 In Fig. 8 the square lattice wi th  
two square sublatt ices  is shown.  We note  that each lattice site of  the 
original  lattice is part of  both  sublattices,  s Since on ly  one  mirror can be put 
at a lattice site, the mirror at this site can be long  to on ly  one  of  the two 
ambient  sublattices.  As a result, each sublatt ice is on ly  half-filled with  
mirrors, so that the probabi l i ty  p that a bond  in each sublatt ice is occupied  
by a mirror is 1/2. This  is just  the critical value  for b o n d  perco la t ion  on a 
square lattice, sb that the mirrors are at the b o n d  perco la t ion  threshold on 
the two  sublattices.  Thus ,  if the size of  the mirrors is chosen  equal  to the 

4 A different representation of the mirror model as a random tiling related to percolation has 
been considered by Roux et al. t~3~ 

s The sublattices were plotted wrongly in Fig. I in ref. 2. 
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bond length of the sublattices, bond percolation clusters appear. We note 
that each closed orbit with period larger than four time steps is formed by 
reflection between the inner and outer perimeters of bond clusters on the 
sublattices (Fig. 8). There is no ambiguity about "inner" or "outer," as the 
closed orbits do not cross themselves and the inner and outer perimeters 
refer to clusters on different sublattices. This mapping implies the following 
analogy. From percolation theory we know that the mean-square gyration 
radius 2 ( R N )  o of the perimeter of a percolation cluster with N perimeter 
sites grows with N as 

( R ~ )  o ~ N2/'O = NS/7 (9) 

where the fractal dimension d f =  7/4. Furthermore, the probability Po(N) 
to find an open percolation cluster with N perimeter sites decreases with N 
a s  

Po(N) ~ N 2- ~ = N -  i/7 (10) 

so that the size distribution parameter r =  15/7. We note that d I and z 
satisfy a hyperscaling relation: 

r - 1  = 2 / d f  (11) 

Similarly, for the trajectories of the particles on the lattice, one finds that 
the mean square displacement Ao(t) for particles on open trajectories at 
time t increases as 

Ao(t) ~ t 8/~ (12) 

while the probability for an open trajectory at time t is given by (6), 

Po( t ) ~ t -1/7 

The analogy of (9), (12) and also (10), (6), respectively, is obvious and 
illustrated in Fig. 5b. 

4. THE ROTATOR MODEL 

We now discuss our rotator model, which is a special case of a set of 
rotator models introduced by Gunn and Ortufio. 1141 The scattering rules 
are illustrated in Fig. 1 and although similar to those of the mirror model, 
differ from those in their scattering results in half of the cases (cf. the rules 
in Fig. 1); they do not lead to time-reversible particle motions, as in the 
mirror model. 
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Old calculation of diffusion coefficient D as a function of t on a log~0-1og]o scale for 
the rotator model on the square lattice for CL = CR = 0.25.14~ 

In earlier work, the rotator model seemed to behave for CR = CL very 
similarly to the mirror model (Fig. 9), while for CR r CL a qualitative dif- 
ference was noticed. Then instead of showing a class II anomalous diffusive 
behavior as the mirror model did, a dynamical phase transition was 
observed, for sufficiently large CR or CL, from anomalous to an absence of 
diffusion--to which we will refer as no-diffusion--where the mean square 
displacement became bounded [ z l ( t )<  const] and all particles trapped, so 
that no extended closed orbits occurred. We called this class IV behavior. 14) 
This behavior is illustrated in Fig. 10a for D(t) and in Fig. 10b for/5(r, t). 
We note, that indeed for t/> 2 l~ the curve for D(t) on loglo-log~o scale has 
a slope of - 1  and ~ appears stationary and does not seem to change any 
longer, as all particles are trapped by that time. This leads to a phase 
diagram as pictured in Fig. 1 la, where the phase transition occurs across 
two (approximately determined) straight lines, anchored on the CR and CL 
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Fig. 10. (a) Diffusion coemcient D as a function of the time t on a Iogt0-iogto scale for the 
rotator model on the square lattice for C L = 0.6 ,  C R = 0.2; ( b )  corresponding radial distribu- 
tion function P ( r ,  t )  a s  a function of distance r from the origin at time steps t = 2 7 ( ~ ) ,  t = 21~ 

I +  ), a n d  t = 2 t3 ( v 1 ) ,  respectively. 
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Fig. 1 I. (a) Old phase diagram for the rotator model on the square lattice(4); the part with 
dashed lines corresponds to that covered by the theorem of Bunimovich and Troubetzkoy; 
(b) new phase diagram. The dash-dotted lines indicate the extrapolated behavior we expect for 
C < 0.7, the minimum value of C we considered. 

axes at C R = C L = 0.593, the critical concentration for site percolation on 
the square lattice. The point CR = CL = 0.5 for C = I, which can be mapped 
on the corresponding point for the mirror model, has class II  behavior/2) 
This result was consistent with another theorem proved by Bunimovich 
and Troubetzkoy, t7) which stated that (1) there exists a critical concen- 
tration CR,r or CL, re(0.5,1)  (our 0.593), such that, for CR>CRc.r o r  

CL > CL,,, all trajectories are periodic with probability l; (2) for C =  1 all 
trajectories are periodic with probability 1. The proof is based on the 
observation that if an infinite percolation cluster of, say, right rotators 
exists, the particle inside the cluster is everywhere surrounded by a contour 
consisting of only one kind of rotator and consequently is trapped. The 
regions covered by this theorem are indicated in Fig. 1 l a. 

Recently we have extended all calculations for this model also to one 
million and sometimes close to more than ten million time steps and 
again found very different results than were obtained before for typically 
4000-10,000 time steps. 

In Fig. 12, D(t) is plotted for C =  1.0 and 0.8 for CR = CL as well as 
for a particular value C R ~- C L for C = 0.9. While for CL = C R  and C = 0.8, 
D(t) ~ 0, i.e., class IV behavior or trapping is observed, for the particular 
concentrations CR = 0.423, CL = 0.477 for C =  0.9, D(t) seems to approach 
a constant ~ 0, i.e., class II behavior or extended closed orbits occur, as for 
CL = CR =0.5 when C =  1. The possible occurrence of extended closed 
orbits for special values of CR and CL is confirmed by further study. 
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Fig. 12. Diffusion coefficient D as a function of t on a logt0-1og,o scale for the rotator model 
on the square lattice for the critical concentrations for C = 0.9 at CL = 0.477, CR = 0.423 (�9 
C= 1 at CL=CR=0-5 (+), and C=0.8 at CL=CR=0.4 (V1); critical concentrations are 
printed in boldface. 

Figure 13a shows the number  of  open orbits No(t) for C =  1 for a variety 
of  CR and CI .  Only for C R =  C L = 0 . 5  do extended trajectories occur 
and a corresponding slow decay of  No(t) occurs, while for CR ~ eL,  the 
precipitous decay of  No(t) clearly indicates the sudden trapping of  particles 
when t approaches a critical value. Similarly, Figs. 13b and 13c show class 
II behavior only for the particular values CR=0.455,  CL=0.495  and 
CR = 0.46, CL = 0.39 for C = 0.95 and C = 0.85, respectively. The number  of  
closed orbits No(t) at these critical concentrations of  CR and CL is a mini- 
mum when compared to those at all other concentrations of  CR and CL at 
a given value of  C. For  aU these cases, the decay of  No(t) with time is again 
given by Eq. (6), confirming the suspected class II  behavior deduced from 
the behavior of  D(t). Figure 13d shows the similarity of  the decay of  No(t) 
for a number  of  concentrations and suggests a dynamical phase diagram as 
given in Fig. 1 lb instead of  that in Fig. 1 la. The existence of  critical points 
for C <  1 was noticed before by Ortufio et al., (~s) but the location and 
properties of  their points are quite different from ours. 

The present situation can be summarized as follows. 

1. There appear to be two symmetric critical l ines--when CR/C L is 
critical, so is C.L/CR--in the phase diagram, where extended closed orbits 
of  a particle can occur. Outside these critical lines there is trapping 
everywhere. 

2. Only for C = 1 is there a connection of  the rota tor  model with 
percolation through a mapping on a bond percolation problem. 
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Fig. 13. Number of open orbits out of 10,000 trajectories as a function of t on a log~o-log ., 
scale for the rotator model on the square lattice. (a) C= 1 at CL= CR=0-5 (<>), C,=0.51, 
CR = 0.49 ( + ), CL = 0.52, CR = 0.48 ( [] ), CL = 0.53, CR = 0.47 ( x ), and CL = 0.54, CR = 0.46 
(A) (the number of closed orbits has a minimum at CL=CR=0.5); (b) C=0.95 at 
CL=CR=0.475 (~),  CL=0.485, C~=0.465 (+),  CL=0.495, CR=0.455 (t-q), and 
CL=0.505, CR=0.445 ( x ) (the number of closed orbits has a minimum at C,=0.495, 
CR=0.455); (C) CL=CR=0.425 (~),  CL=0.43, CR=0.42 (+), CL=0.44, CR=0.41 (IZl), 
CL =0.45, CR=0A (• CL=0.46, CR=0.39 (A), and CL = 0.47, CR =0.38 (*)(the number 
of closed orbits has a minimum at CL = 0.46, CR = 0.39); (d) same as in (c) for CL = CR = 0.5 
(~),  CL= 0.495, CR= 0.455 (+),  CL= 0.477, CR=0.423 (A), CL= 0.46, CR=0.39 ([3), and 
CL= 0.44, CR = 0.36 ( x ). The lines through the points are drawn to guide the eye. 

In  fact, at  C =  1 a g iven c losed orb i t  can  a lways  be m a p p e d  in to  the 
pe r ime te r  o f  a b o n d  cluster  as follows: we replace  each  r o t a t o r  a long  the  

t ra jec to ry  by a b o n d  which  looks  like a m i r r o r  wi th  a length  o f  x / ~  lat t ice 

dis tances  and  wi th  an  o r i en t a t i on  such tha t  the b o n d  does  no t  cross  the 

par t ic le  t r a jec to ry  (Fig.  8). As in the m i r r o r  mode l ,  the par t ic le  t r a j ec to ry  

bounces  back  and  for th  be tween  the inner  and  ou t e r  pe r imete rs  o f  b o n d  
clusters.  As for the m i r r o r  mode l ,  there  is no ambigu i ty  a b o u t  " inne r "  and  

" o u t e r "  per imeters ,  since the c losed orb i t  does  no t  cross  i tself  and  the 
bonds  do no t  cross  the c losed orbi ts  e i ther  and the inner  and  ou t e r  

pe r imete rs  of  b o n d  clusters  reside on  different sublat t ices,  respect ive ly  

(Fig.  8). Howeve r ,  un l ike  for the  mir rors ,  the  inner  pe r ime te r  o f  a b o n d  



New Results for Diffusion in Lorentz Lattice Gas CA 459 

1 

0.1 

% 
~o 0.01 

0.001 

o.oooI 

= = = = = m a e a ~ e a 8 8 a ~ t . ,  ~ 
u o 

w *  

i 

0.1 

0.01 

o . 

l o - t ~  

l o . 1 ~  

" ' ' ' ' ' ' ' ' . . . . t ~ : . . . . . . .  

5 10 1~ 15 20 25 5 10 I~ 15 

Fig. 14. Contribution to diffusion coefficient from open orbits Po(t)zlo(t)/t as a function 
of time t on a Iogso-log2 scale for (a) C=0.85 at Ct=0.46, CR=0.39 (�9 CL=0.45, 
CR =0.4 (+), and CL =0.47, CR=0.38 (I--I) for the rotator model on the square lattice; 
(b) C= 0.8 at CL= Ca= 0.4 (<~) and CL = 0.41, CR = 0.39 (+)  for the rotator model on the 
triangular lattice. The approach to a horizontal line is apparent for the critical concentrations. 

cluster always cor responds  to one kind of ro ta to r  (R or  L), while the outer  
per imeter  of  a bond  cluster always corresponds  to the other  kind of  ro ta to r  
(L or  R). 

We will now use this to argue that  for C - -  1 percola t ion  occurs only 
for CL = CR = 0.5, unlike for the mirrors.  Firs t  we note that  the number  of  
(the same kind of) ro ta tors  cor responding  to the per imeter  of  the inner 
bond  cluster is always smaller  than that  of  the cor responding  outer  bond  
cluster. Because the part icle t ra jectory  has a one- to-one relat ion to the 
inner bond  cluster, it follows that  for large closed orbi ts  the probabi l i ty  
for a bond  of the inner per imeter  of a bond  cluster will depend on the 
smaller  of  the two concentra t ions  CR and CL at C - - 1 .  Therefore,  since 
CL = CR = 0.5 just  cor responds  to the bond  percola t ion  cluster threshold,  
where the probabi l i ty  p = p,. = 0.5, there will exist extended closed orbits,  
leading to a diffusive behavior  of  class II. However,  for CL :/: CR, the 
per imeter  of the inner bond  cluster cor responds  to a p < Pc = 0.5, so that  
there is then no inner bond  percola t ion  cluster and there are no extended 
closed orbits ,  i.e., all part icles are t rapped  and the diffusive behavior  is that  
of  class IV. 

F o r  C <  l, no such mapp ing  seems to exist, since no percola t ion  
clusters can be . formed,  because of  the empty  sites on the lattice. Never-  
theless, we determined independently that  r =  15/7 by Po(t)~ t2-~=t -1/7 
(Figs. 13a-13d)  as well d ; = 7 / 4  from Po(t) Ao(t)/t~t-1/7t2/dl/t= 
t - l / 7 t s / 7 / t  ~ const (Fig. 14a) leading, within the exper imental  errors,  to the 
val idi ty of the hyperscal ing relat ion (11 ) a long the two symmetr ic  critical 
lines. 
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3. In spite of what one would expect physically, for C <  1, there 
appears to be no obvious influence of the site percolation transition and 
the formation of an infinite cluster of right (or left) rotators, on which the 
proof of the above-mentioned Bunimovich-Troubetzkoy theorem is based. 
The Bunimovich-Troubetzkoy theorem seems therefore only sufficient, not 
necessary for trapping of the particle (class IV behavior) to occur. 

(a) 

right rotator left rotator right mirror left mirror 

(b) 
Fig. 15. (a) A typical particle trajectory on the triangular lattice; three-sided dotted lines 
stand for right and left mirrors and R and L stand for right and left rotators, respectively; 
(b) the scattering rules for the mirror and rotator models on the triangular lattice. 
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5. THE MIRROR AND ROTATOR MODEL ON THE 
TRIANGULAR LATTICE 

A piece of a triangular lattice is shown in Fig. 15a. The motion of the 
particle takes place on a triangular lattice if the scattering of the particle 
occurs over the largest possible angle 2n/3, but on a honeycomb (sub) 
lattice if the scattering occurs over the smallest angle/t/3. (3) The latter case 
is discussed in the accompanying paper. (j'-~ Right and left mirrors as well 
as rotators can be defined on the triangular lattice as illustrated in Fig. 15b. 

For relatively short times (t ~< 10, 000), we found for both (mirror and 
rotator) models the dynamical phase diagram of Fig. 16a, similar to that 
for rotators on the square lattice (Fig. 1 la). The only difference is that the 
critical concentration for site percolation on the triangular lattice is 
f R o  r = C L c  r = 0.5 instead of 0.593. A similar theorem as for the rotator 
model on the square lattice has been proved for the mirror and rotator 
models on the triangular lattice by Bunimovich and Troubetzkoy. (7) The 
regions covered by this theorem are indicated in Fig. 16a. 

The recently carried out extended calculations up to one million or 
more time steps again showed very different results. 

In Fig. 17a, D(t) is plotted for a number of values of CL and C R 
showing that, for CL = CR, D(t) approaches a constant, while for CL :/: C~ 

rotator and mirror model 

0.~ - --~t~-"h.(o.5, o . 5 i  

Class II I ~  

0.5 1.0 

triangular lattice 

rotator and mirror model 

triangular lattice 

Fig. 16. 

(a) (b) 
(a) Old phase diagram for both mirror and rotator models on the triangular lattice; 

dashed lines as in Fig. I la; (b) new phase diagram. 

822/81/I-2-30 
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Fig, 17. (a) Diffusion coefficient D as a function of  t on  a log~o-log,o scale for the rotator  
model  on the triangular lattice for C =  1 at  Ct = C R = 0 . 5  ( A ) ,  C L = 0 . 4 5  ' CR=0 .55  ( •  

C = 0.8 at  CL = Ca  = 0.4 (*), C = 0.79 at  CL = 0.4, CR = 0.39 ( ~ ), C = 0.65 at  C L = CR = 0.325 
( + ), and C = 0.5 at CL = Ca = 0.25 ( []  ); (b) number  of  open orbits out of  10,000 trajectories 
as a function of  t on a Iog~a-log 2 scale for the rotator  model  on the triangular lattice for 
C = 0 . 8  at CL = C R = 0 . 4  (<)), CL =0.41,  CR = 0.39 ( + ), CL=0.43 ,  CR = 0.37 (IS]), CL = 0.44, 
C R =0 .36  ( • ), and  CL = 0.45, C R =0 .35  (/X) (the number  of  closed orbits has a m i n i m u m  at 
C L =  CR=0 .4 ) ;  (C) same as in (b) tbr C L =  C a = 0 . 5  { ~ ) ,  Ct = C a = 0 . 4  ( + ) ,  C L =  C R = 0 . 3  
{I-q), and C L =  C R =  0.25 ( • ). The lines through the points are drawn to guide the eye. 

it decays with a slope of - 1, indicating, with Eq. (3), that the mean square 
displacement is bounded. There is again the occurrence of a critical concen- 
tration at CL = CR for C = 0 . 8  as illustrated in Fig. 17b, where again the 
precipitous decay of No(t) for CL:~ CR clearly indicates the sudden trap- 
ping of particles for a finite t. The slow power-law decay of No(t) according 
to Eq. (6) for CR = CL = 0.4 is due to the occurrence of (infinitely) extended 
closed orbits and holds for all CL = CR. Figure 17c shows this behavior 
for a number of different C for CR = CL and Fig. 16b gives the new phase 
diagram, which is--for the triangular lattice--identical for the mirror and 
the rotator models. 

This same behavior of mirror and rotator model can be understood by 
replacing all the right (left) rotators on a particle trajectory by either right 
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Fig. 18. A typical particle trajectory (closed orbit) on the triangular lattice (thin and thick 
solid lines with arrows) relates to site clusters on the same triangular lattice as for the particle 
trajectory. The thick lines are the perimeters of the site clusters. The three-sided dotted lines 
represent the mirrors for the mirror model, L and R represent the rotators for the rotator 
model, and the particle trajectory is between the inner and outer perimeters of the clusters. We 
can see that the mirror model and the rotator model are the same by replacing the right (left) 
mirrors by right (left) rotators or vice versa. 

(left) mirrors or left (right) mirrors, while not  changing the empty sites on 
the particle trajectory. Thus in Fig. 18, we only need to replace all right 
mirrors by right (left) rotators and all left mirrors by left (right) rotators 
to obtain the same trajectory with the same (opposite) direction of particle 

r o t a t o r  m i r r o r  r o t a t o r  _ _  m i r r o r  motion. So, the mapping will be either C L = C c , C R - C R or 
r o t a t o r  _ _  m i r r o r  r o t a t o r  m i r r o r  C L - C  R , C e = C L . There is no difference between these 

two cases since the diffusive behavior of the models is invariant  for an 
interchange of CL and CR. 

We notice in Fig. 16b that there is now only one critical line CR = CL, 
which exhibits class II behavior. As for the square lattice, we determined 
independently the exponents r= 15/7 and dr=7/4 (Figs. 14b, 17b, and 
17c), leading, within the experimental errors, to a verification of the hyper- 
scaling relation (11) along the entire critical line. For  all other concen- 
trations class IV behavior obtains. Only for C= 1 for both (mirror and 
rotator) models is there a mapping to a site percolation problem on the 
same lattice obtained by connecting the same kind of nearest neighbor 
scatterers (mirrors or rotators) (Fig. 18). 
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The present situation can be summarized as follows. 

1. There appears to be one critical line in the phase diagram where 
(infinite) extended closed orbits of  a particle occur and hyperscaling rela- 
tion (I 1 ) holds. Outside this critical line there is everywhere trapping. 

2. Only for C =  1 for both  (mirror and rotator)  models is there a 
connection with site percolation on the s a m e  lattice as that of  the particle 
trajectory (Fig. 18) (cf. in Section 4, the mapping of  the particle trajectories 
for the rota tor  model on the square lattice onto bond clusters on sub- 
lattices). 

3. For  C < 1, there appears no noticeable influence of  the percolation 
transition, on which the above-mentioned proof  of  the Bunimovich-  
Troubetzkoy theorem is based. Thus, the Bunimovich-Troubetzkoy theorem 
seems also in this case only a sufficient, not  a necessary condition for class IV 
behavior to occur. 

6.  O U T L O O K  

We summarize our  new results in Table II, and we close with the 
following questions and remarks. 

1. The most  striking result of  these investigations seems to be the 
existence for both lattices of  critical lines which are extensions of  percola- 
tion transitions and appear  to have universal percolation perimeter critical 
exponents satisfying the same hyperscaling relation (11) as found for the 
percolation problem. On these critical lines extended closed orbits occur, 
but  what determines for a given concentrat ion C the critical concentrations 
for these extended orbits to occur is unknown to us. 

2. Are there for a not fully occupied lattice (C < 1) generalized per- 
colation clusterlike structures to which the extended closed orbits are 

Table II. Comparison of Different Diffusive Behaviors 

Lattice Mirror Rotator 

Square 0 < C < 1 --, superdiffusion 
C= 1 --* anomalous diffusion (class II) 

Triangular 

See Fig. 4b 

0 < C~< 1 --, no-diffusion (class IV) 
except for 2 critical lines 

anomalous diffusion (class II) 
See Fig. 11 b 

C, ~ CR ~ no-diffusion (class IV) 
CL = CR --' one critical line --* anomalous diffusion (class II) 

See Fig. 16b 
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geometrically related, like the percolation clusters on a fully occupied 
lattice (C = 1), i.e., does our dynamical model suggest something new--a 
possible generalization--for the percolation problem? 

3. What is the dynamical meaning of hyperscaling relations for non- 
percolation-related trajectories? 

4. Can one understand that in all cases--i.e., on both the square and 
the triangular lattice and for both mirror and rotator models (except for 
the mirror model on the square lattice for CR or CL = 0)--The trajectory 
of a moving particle eventually always closes? Furthermore, how can one 
see that in most cases the scatterers will lead to a quick trapping of the 
particle, but that in some--rather special--cases closed orbits of any extent 
can occur so that the closing of orbits proceeds power-law or logarithmi- 
cally slow. We note that the Bunimovich-Troubetzkoy theorems proved so 
far do not distinguish between class II and class IV closing of orbits. 

5. In all cases considered here, all trajectories close eventually. This 
does not imply that no-diffusion takes place in any form; for anomalous 
(class II) diffusion, one can still define a finite diffusion coefficient by the 
relation (4). In fact, a whole range of possible diffusive behaviors occurs 
ranging from superdiffusion to no-diffusion. The closing of all trajectories 
does therefore not by itself say anything about the way the particles 
diffuse--as measured by their mean square displacement--through the 
scatterers. 

6. The previously obtained results for the flipping-mirror and rotator 
models c5~ do not seem to be affected by the present extension of the time 
scale of our calculations. They remain therefore unchanged. 
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